Monte Carlo Complexity of Global Solution of Integral Equations

نویسنده

  • Stefan Heinrich
چکیده

The problem of global solution of Fredholm integral equations is studied. This means that one seeks to approximate the full solution function (as opposed to the local problem, where only the value of the solution in a single point or a functional of the solution is sought). The Monte Carlo complexity is analyzed, i. e. the complexity of stochastic solution of this problem. The framework for this analysis is provided by informationbased complexity theory. The investigations complement previous ones on stochastic complexity of local solution and on deterministic complexity of both local and global solution. The results show that even in the global case Monte Carlo algorithms can perform better than deterministic ones, although the difference is not as large as in the local case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet Monte Carlo Methods for the Global Solution of Integral Equations

We study the global solution of Fredholm integral equations of the second kind by the help of Monte Carlo methods. Global solution means that we seek to approximate the full solution function. This is opposed to the usual applications of Monte Carlo, were one only wants to approximate a functional of the solution. In recent years several researchers developed Monte Carlo methods also for the gl...

متن کامل

A Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind

In the present work‎, ‎a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind‎. ‎The solution of the‎ integral equation is described by the Neumann series expansion‎. ‎Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method‎. ‎An algorithm is proposed to sim...

متن کامل

Monte Carlo Simulation to Solve the Linear Volterra Integral Equations of The Second Kind

This paper is intended to provide a numerical algorithm based on random sampling for solving the linear Volterra integral equations of the second kind. This method is a Monte Carlo (MC) method based on the simulation of a continuous Markov chain. To illustrate the usefulness of this technique we apply it to a test problem. Numerical results are performed in order to show the efficiency and accu...

متن کامل

Quasi - Monte Carlo Methods in Computer Graphics

The problem of global illumination in computer graphics is described by a Fredholm integral equation of the second kind. Due to the complexity of this equation, Monte Carlo methods provide an efficient tool for the estimation of the solution. A new approach, using quasi-Monte Carlo integration, is introduced and compared to Monte Carlo integration. We discuss some theoretical aspects and give n...

متن کامل

Monte-Carlo Global Illumination Methods State of the Art and New Developments

This paper presents the state of the art and recent developments of Monte-Carlo global illumination algorithms. First it surveys the basic tasks of global illumination, which can be formulated as the solution of either the rendering or the potential equation, then reviews the basic solution techniques, including inversion, expansion and iteration. The paper explains why stochastic approaches ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Complexity

دوره 14  شماره 

صفحات  -

تاریخ انتشار 1998